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A Review on Aging-Aware System Simulation
for Plug-In Hybrids

Tobias Frambach™, Ralf Liedtke, Philipp Dechent™, Dirk Uwe Sauer™, and Egbert Figgemeier

Abstract— The lithium-ion battery is a vital powertrain com-
ponent in plug-in hybrid electric vehicles (PHEVs). The fuel
reduction potential and cost-effectiveness of these vehicles depend
on the sizing of the powertrain components and their utilization,
which is defined by the energy management system (EMS). The
battery is affected by power and capacity reduction over the
lifetime of the vehicle, which needs to be considered during
the design process to ensure the performance goals throughout
the vehicle’s lifetime. Current literature regarding battery aging
usually contains experimental results, which are not transformed
into a useful aging model for system simulations. Consequently,
battery aging is often neglected, which is why this article
intends to help researchers understand the degradation process
of batteries in PHEVs and consider this in their simulation
and dimensioning process. First, PHEV powertrain topologies
and components are presented. Afterward, battery degradation
mechanisms and recent findings are explained, followed by
appropriate modeling approaches for different simulation targets.
Finally, current aging-aware EMS literature is systematically
reviewed, and the integration of the aging models is analyzed,
so researchers in system simulation areas can improve their
powertrain models.

Index Terms—Battery degradation modeling, energy manage-
ment strategy (EMS), lithium-ion battery, plug-in hybrid electric
vehicle (PHEYV).

I. INTRODUCTION
HE automotive industry is currently facing a change con-
cerning powertrain technology. Shrinking oil reserves [1],
climate change, stricter emission regulations, and threats of

Manuscript received March 16, 2021; revised May 28, 2021; accepted
July 6, 2021. Date of publication August 11, 2021; date of current version
April 20, 2022. (Corresponding author: Egbert Figgemeier:)

Tobias Frambach is with Robert Bosch GmbH, 71701 Schwieberdingen,
Germany, and also with the Institute for Power Electronics and Electrical
Drives (ISEA), RWTH Aachen University, 52066 Aachen, Germany (e-mail:
tobias.frambach @rwth-aachen.de).

Ralf Liedtke is with Robert Bosch GmbH, 71701 Schwieberdingen,
Germany (e-mail: ralf.liedtke@de.bosch.com).

Philipp Dechent is with the Institute for Power Electronics and Electrical
Drives (ISEA), RWTH Aachen University, 52066 Aachen, Germany, and
also with Juelich Aachen Research Alliance, JARA-Energy, 52428 Juelich,
Germany (e-mail: philipp.dechent@isea.rwth-aachen.de).

Dirk Uwe Sauer is with the Institute for Power Electronics and Electrical
Drives (ISEA), RWTH Aachen University, 52066 Aachen, Germany, also with
Juelich Aachen Research Alliance, JARA-Energy, 52428 Juelich, Germany,
also with the Institute for Power Generation and Storage Systems (PGS), E.ON
ERC, RWTH Aachen University, 52074 Aachen, Germany, and also with the
Helmholtz Institute Miinster (HI MS), IEK-12, Forschungszentrum Jiilich,
48149 Miinster, Germany (e-mail: dirkuwe.sauer@isea.rwth-aachen.de).

Egbert Figgemeier is with the Institute for Power Electronics and Electrical
Drives (ISEA), RWTH Aachen University, 52066 Aachen, Germany, and also
with the Helmholtz Institute Miinster (HI MS), IEK-12, Forschungszentrum
Jiilich, 48149 Miinster, Germany (e-mail: e.figgemeier@fz-juelich.de).

Digital Object Identifier 10.1109/TTE.2021.3104105

cities such as London, Paris, and Stuttgart banning vehicles
with combustion engines [2] have accelerated the demand
for electrified powertrains. Hybrid electric vehicles (HEVs),
plug-in HEVs (PHEVSs), and electric vehicles (EVs) offer the
potential to decarbonize the transportation sector when using
it with renewable energy sources due to increasing the share
of electric energy used for vehicle propulsion [3], [4].

PHEVs offer great potential to meet the future environmen-
tal requirements of the powertrain. Compared to EV systems,
PHEVs utilize an additional conventional fuel-based power-
train with an internal combustion engine (ICE). This results
in an extended driving range comparable to conventional
vehicles, while the electrical system can be designed with a
smaller capacity compared to EVs [5]. In contrast to HEVs,
the PHEV powertrain includes an external charge-plug for
electric energy and larger-sized electric components, allowing
a higher share of electric driving and subsequently a lower
fuel consumption. In addition to design considerations [6],
having two different energy sources on board makes the
system more complex, so a robust, optimal, and admissible
energy management system (EMS) that can optimize different
performance targets is required to control the power flow
inside the vehicle [7].

Furthermore, the sizing of the components is essential,
so the system is not overdimensioned and uneconomical
for the customer. Despite the average-sized components for
PHEVs, the battery still accounts for a high share of the pow-
ertrain costs [8] and needs to be dimensioned accordingly [9]
to grant a total cost of ownership (TCO) benefit [10], [11].
The battery is usually oversized because the battery cells
degenerate throughout the lifetime, resulting in a capacity
and power fade. To comply with car manufacturers’ warranty
agreements for the battery lifetime and meet future emission
requirements [12], [13], it is crucial to predict the battery
degradation precisely and oversize the components as little as
possible. In addition, real-world driving emissions [14] and in-
service conformity requirements [15] of the powertrain system
emphasize the need for a complete lifecycle analysis of all
components.

Recently, the combination of EMS with battery aging
models has gained a research interest. EMSs are typically
designed for minimizing fuel consumption, but additional
optimization targets can also be added. Considering battery
aging in the EMS can mitigate the capacity and power fade,
therefore reducing the size and costs of the overdimensioned
battery [16], [17]. The aging-aware PHEV strategy can be
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improved by prediction data [18], used for hybrid energy
storage systems (HESSs) [19], and include charging influ-
ences [20]. A review of general battery aging mechanisms
can be found in [21] and [22] and in [23] with a special focus
on automotive aspects. Jaguemont et al. [24] concentrate on
the mechanisms at cold temperatures and thermal management
strategies considering these effects. EMSs are reviewed in
[25] and [26] for all hybrid vehicles, while a more detailed
review for PHEVs can be found in [27] and [28].

The review has been done for battery aging and EMSs
separately, but a combination of both perspectives is necessary
for a comprehensive and optimal PHEV system optimization.
In detail, this means that many aging models are not intended
for implementation in an EMS, and studies focusing on
improving energy management do not include battery aging in
their simulations. This study aims to close the gaps between
these two disciplines and give researchers insights into both
domains. Therefore, an overview of currently known aging
mechanisms and their influencing operating parameters is
given. Subsequently, battery aging models, which are widely
used in the field of EMS and recent ones, are reviewed.
Degradation models adapted to PHEVs are discussed sepa-
rately with their key differences. Next, we gather aging-aware
PHEV studies, categorize them by EMSs types, and discuss
their key findings. Finally, open issues and future investigation
topics are identified, which can serve as a starting point for
researchers.

The remainder of this article is structured as follows.
Section II describes the possible PHEV powertrain topologies.
After defining the topology, the battery component is analyzed
further. Section III presents the aging mechanisms and their
origins inside a battery cell. In Section IV, the possible
methods to model battery aging are discussed. Section V
classifies EMSs and presents published methods, which con-
siders battery aging and fuel consumption for PHEVs. Dis-
cussion and future research topics are shown in Section VI.
Finally, Section VII summarizes the key findings of this
article.

II. POWERTRAIN TOPOLOGIES FOR PHEVS

In this section, the basic powertrain topologies for PHEVs
are explained. The differentiation is vital for powertrain
modeling. Each topology provides individual functions and
advantages for specific vehicle operating cases, as shown
in Table 1. HEVs are operated in charge sustaining mode
only, where the battery energy is controlled around a mean
value, and only the electric motor provides electric energy
during recuperation and load point shifting or rising. PHEVS
have an additional onboard charger to use grid electricity.
The vehicle can be operated in charge sustaining mode but
additionally in a depleting mode with a charged battery, using
the grid energy for longer electric driving periods compared to
HEVs. More detailed insights can be found in [29], including
challenges and subtypes or in [30], where component sizing
methods and EMSs are reviewed as well. The topologies
can be distinguished into series, parallel, and power-split
configurations.
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TABLE I
HYBRID VEHICLE FUNCTIONS FOR DIFFERENT TOPOLOGIES
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Fig. 1. Series plug-in hybrid topology.

Differential

A. Series Hybrid Electric Vehicles

The ICE has no direct mechanical connection to the wheels
in a series HEV (see Fig. 1), but it is connected in series
with a generator and an electrical motor. The ICE powers
the generator, which is connected to a battery. The drive
axle is only connected to an electrical motor. The ICE can
always run in the optimal operating area because it is not
coupled to the current power demand. The conversion of
the energy twice, once in the generator and second in the
electric motor, leads to additional irreversible power losses.
Generally, this topology is efficient in dynamic urban driving
profiles with high standstill times and many recuperation
phases. Therefore, it is often used for buses, construction, and
heavy vehicles [27], [31], [32]. An example of the topology
commonly available in the passenger car market is the BMW
i3, where the range extender version operates as a series PHEV.

B. Puarullel Hybrid Electric Vehicles

If the ICE and electric motor can propel the vehicle simul-
taneously, the system is called a parallel HEV (see Fig. 2).
A further distinction is usually made for the positioning
of the electric motor within the powertrain, referred to as
PO-P4 [33]. PHEVs are made to drive in electric mode, which
requires at least a P2 system, where the electric motor is
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Fig. 2. Parallel plug-in hybrid topology.
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Fig. 3. Power-split plug-in hybrid topology.

placed after the clutch. Parallel systems are more efficient
for extra-urban and highway driving profiles [27], [32], [34].
Examples of parallel hybrid vehicles PHEVs on the road are
BMW 330e (P2), Volkswagen Passat PHEV (P2), and the Mini
Countryman PHEV (PO + P4).

C. Power-Split Hybrid Electric Vehicles

A power-split hybrid offers the possibility to split the ICE’s
input power into a mechanical and an electric path with a
planetary gear set (see Fig. 3). These systems require two
electric machines and at least one planetary gear, making the
powertrain expensive and complex in terms of packaging and
the EMS [27], [32], [35]. The Toyota Motor Company is
well known for its power-split hybrids, such as the Prius or
RAV4, which also offers a PHEV version. Additional to series,
parallel, and power-split hybrids, there are mixed forms on the
market to combine the advantages. However, the powertrain
will become more complex and expensive because additional
components and connecting elements are required.

III. DEGRADATION OF LITHIUM-ION BATTERIES

Every electrified powertrain topology consists of at least one
energy storage system. Today’s electrified vehicles typically
use lithium-ion batteries to store electrical energy due to the
high energy density. The lithium-ion cells degrade during
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Fig. 4. Aging mechanisms in lithium-ion cells (adapted from [36]).

lifetime operation due to several aging mechanisms, as shown
in Fig. 4. These are discussed in the following, including the
originating factors. Finally, some recent discoveries regarding
reversible effects on aging are shown, which leads to different
capacity trends in real-life applications compared to stationary
laboratory testing.

A. Anode

The negative copper electrode is typically coated with
graphite, silicon, carbon, or titanate. The most widely used
material is graphite because of its balanced characteristics
regarding energy and power density over a lifetime [37].
Silicon promises higher gravimetric energy densities; how-
ever, it exhibits significant volumetric changes during cycling,
resulting in a low lifetime performance because of the mechan-
ical stress in the material. Current research is focusing on
increasing the share of silicon in a mixture with graphite
further [38], [39].

The primary aging effect for lithium-ion cells with graphite
occurs between the electrolyte and coated electrode. The
potential of graphite is outside the operating voltage range
of the electrolyte [40]. Accordingly, a layer called solid
electrolyte interphase (SEI) on the graphite is created with
time [41], which prevents further electrolyte degradation from
electrons and impedes current collector corrosion [21]. The
buildup of this passivation layer leads to a loss of lithium
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inventory (LLI). Consequently, the capacity of the battery
is reduced, whereas the internal resistance rises due to the
resistive film [42]. Even though the layer protects the anode,
a further expansion of the SEI is still possible. Graphite
exhibits a volume expansion during cycling, which can crack
the SEI layer [43], [44]. The SEI can penetrate the electrode
and the separator, which can lead to a smaller accessible active
surface area [21]. Additional to the SEI growth, the dissolu-
tion at higher temperatures of the SEI accelerates the aging
process. A decomposition of the protecting SEI layer results
in lithium corrosion and lithium salt side products, which are
less permeable for ions [45], [46].

Another well-discussed degradation mechanism is reducing
lithium ions on the active material in the form of metal lithium.
This reaction occurs if the anode potential falls below the
standard potential of OV against Li/Li+, which is enhanced
by low temperatures and high charging currents [47], [48].
This can lead to the deposition of metallic lithium called
lithium plating, which can be reduced by prohibiting charging
at low temperatures in the EMS. The plating process consumes
cyclable lithium resulting in a capacity fade. The LLI is
accompanied by further electrolyte degradation by reactions
with metallic lithium [49].

Further aging mechanisms occurring at the anode side
can be due to electrical contact loss [21], current collector
corrosion [50], and graphite exfoliation [51].

B. Cathode

Cathode materials for automotive applications consist of
nickel cobalt aluminum (NCA), nickel cobalt manganese
(NMC), lithium manganese oxide (LMO), or lithium iron
phosphate (LFP). The main advantage of NCA is the high
energy density with a decent lifetime and power characteristic.
On the contrary, this chemistry has a low thermal runaway
(self-heating after reaching a defined temperature) safety [52].
NMC shares most characteristics, but the safety is increased,
which goes along with a smaller energy density. The research
focuses on a higher share of nickel for a higher energy
density [53]. The lower amount of manganese and cobalt
leads to lower cycle life, safety, and conductivity, which has
to be managed [54], [55]. LFP profits from the absence of
the expensive materials as well [56] and is the safest material
regarding thermal runaway among these [57], [58]. In addition,
the cycle and calendar life are prolonged [59] even though the
iron ions tend to dissolute in the electrolyte as well [60]. The
low voltage and high resistance reduce the energy density of
LFP [61].

On the cathode side, a surface layer grows over time as
well. The electrolyte oxidation occurs at high temperatures
and charge voltages above 4.2 V against Li/Li+. The surface
thickness is much smaller, but the electrolyte still degrades,
and an impedance increase is measurable [62], [63].

A more severe aging mechanism on the cathode side is the
dissolution of transition metals, which is also accelerated at
high temperatures and a high state of charge (SOC). As stated
previously, this effect is a dominating aging mechanism
for manganese and iron-based cathode materials. After the
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TABLE II
SUMMARY OF AGING ACCELERATING CONDITIONS AND
ASSOCIATED AGING MECHANISMS
Condition  Operation Main aging mechanism Effect
High Storage and SEI growth and dissolution, Capacity and
temperature cyclization electrolyte decomposition, metal power fade
dissolution
Low Storage and Lithium plating Capacity and
temperature  cyclization power fade
High SOC  Storage and SEI growth, graphite exfoliation, Capacity and
cyclization electrolyte, binder decomposition power fade
Low SOC Storage and Current collector corrosion Power fade
cyclization
High current Cyclization SEI growth, graphite exfoliation, Capacity and
cracking, structural disordering ~ power fade
High DOD  Cyclization Loss of electrical contact, crack- Capacity and
ing power fade

dissolution in the electrolyte and the according LAM at the
cathode, the metal ions can flow to the anode and acceler-
ate the SEI growth, including LLI and resistance increase
there [21], [64].

Structural disordering and phase transitions alter the cathode
materials negatively. Similar to the anode, the cathode active
material undergoes volume changes during cycling, which
stresses the particles mechanically. Also, analogical to the
anode mechanisms, current collector corrosion and failure of
the binder contribute to the aging of the cathode electrode [21].

C. Influencing Operating Parameters

The previously mentioned aging mechanisms occur simul-
taneously and often interfere with each other. In applica-
tions, one individual mechanism’s contribution is not relevant,
so lifetime indicators are generated to define the state of
health (SOH) of a battery. The capacity and power fade are the
most used indicators since they are relevant for the operation
of EVs. A decrease in capacity leads to a lower electric
range, which is especially important for EVs. An increase in
resistance results in higher thermal losses [65] and a power
fade [24] because the cutoff voltages are reached earlier due
to the increased voltage drop. Since HEVs use high-power
batteries with a small capacity, this effect is essential for this
topology [66]. PHEVs compromise between these topologies,
so both capacity fade and resistance increase can be signifi-
cant [61].

The degradation mechanisms affect the aging indicators in
two different ways. Calendar aging describes the aging, which
the cell experiences during rest periods. It is dependent on
temperature and SOC. Cycling aging refers to the aging in
operation mode, so the cell is either charged or discharged.
In addition to the temperature and SOC, it depends on the
depth of discharge (DOD) and current rate. During cyclization,
the cells simultaneously endure calendar aging. To distinguish
these two aging origins, calendar and cycle tests are necessary.
The calendar aging during the cycle test can be calculated and
subtracted from the cycle degradation values to model the cell
degradation more precisely [67]-[69].

Even though the relationship between the mechanisms is
complex and four different aging drivers are identified, some
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the initial condition (left).

general implications can be given to prolong the battery life-
time (see Table II). High temperatures increase the damaging
chemical reaction rate, whereas low temperatures increase
lithium plating [24], [70]. The optimal value is dependent on
the chemistry and operation profile because the temperature
should be low during storage and higher during cycling
operation. A tradeoff exists as well for the optimal SOC.
Higher SOC levels mainly accelerate SEI growth, whereas
low SOC Ieads to current collector corrosion. The mean SOC
during cycling is also important because the same DOD can
result in different aging behavior if cycled around different
average SOC levels. The current and DOD itself should be
low with no phase transitions in-between for a higher battery
lifetime [71], [72].

D. Reversible Effects

Some studies also mention capacity recovery effects and
study the mechanisms behind this phenomenon. The recovery
effect can retrieve several percentage points of the nominal
capacity, so it has a significant influence on aging experiments’
findings. Capacity recovery was reported during storage and
during cycling operation, with different possible causal mecha-
nisms. One explanation is called “anode overhang” or “passive
electrode effect,” which deals with the geometrical oversized
anode. The anode in graphite-based cells is dimensioned larger
than the cathode to prevent lithium plating. The additional
active material, also called overhang, on the anode’s edges,
does not take part in the intercalation process since the
cathode counterpart is missing [73]. This effect is qualitatively
explained in Fig. 5. The initial condition is shown on the left-
hand side, which occurs after a prolonged storage time with
no charging or discharging process. If the SOC of the cell is
changed for a consecutive aging experiment, the active areas

Qualitative sketch of passive electrode effect for calendar aging, distinguishing between higher (top) and lower (bottom) storage SOC compared to

change their degree of lithiation due to the charge transfer
process. Afterward, lithium ions can diffuse from the active
anode part into the overhang or vice versa because of the
potential difference between these two regions. The diffusion
speed increases with higher temperatures and potential dif-
ferences between the active and passive areas [74]. During
subsequent storage or cycling around the opposite SOC level,
the ions move back reversibly to the active part because the
driving potential is now reversed [75]. The implications for
experiments are essential because the passive electrode effect
can make up a difference of several percentage points in
capacity and correlates to [76]-[78]

AAnode

Qloss,rev = (SOCZO - SOCtest) . ( - 100%) (1)

Cathode

where SOC;p and SOCi are the initial SOC and storage
SOC, respectively. Aanode and Acamode describe the coated
areas of the electrodes and lead to a value greater than one.
If these results are transferred into an aging model directly, the
aging capability is underestimated because cycling in real-life
applications with a resulting mean SOC in a medium-range
inhibits this process.

IV. BATTERY DEGRADATION MODELS

To evaluate the battery aging in a drive cycle simulation
or consider it in a vehicle EMS, a control-oriented battery
aging model is needed. Several models have been developed
over the past, categorized into electrochemical, data-driven,
and semiempirical models.

A. Electrochemical Models

Electrochemical models simulate the diffusion and charge
transfer processes inside a battery cell. With these insights,
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detailed information about the aging phenomena in the battery
cell can be obtained, which allows high-fidelity modeling
of the aging phenomena at the electrodes. On the contrary,
a high experimental effort and knowledge are required to
parameterize the large numbers of variables. Furthermore,
the calculation time of electrochemical models is comparably
high, which prevents the real-time EMS applicability. Since
the SEI growth is the most significant aging mechanism for
cells working in the approved operating range, electrochemical
aging models focus on generating a health-conscious EMS.
In [79], the main equations for the irreversible layer growth
on the anode were developed. The growth depending on time
and spatial resolution is described by

00fiim _ —MpJsa
ot anppF

(2

with the layer’s molecular weight Mp, specific surface area
an, mass density pp, and Faraday’s constant F. The local
volumetric current density for the side reactions Js4 is given
by the Butler—Volmer kinetics.

To make this complex aging model implementable into a
real-time control unit, some studies lowered the computational
load with approximations and linearization to make them
applicable in control-oriented simulations [80]-[84]. Those
models are typically used in battery management systems,
where real-time measurements are available and the advan-
tages of high model accuracy can be utilized to obtain battery
SOH and remaining use of life predictions. Recent literature
and reviews exist in this field, and the reader is guided to
those [85]-[88].

B. Data-Driven Models

These aging models fit a model empirically to a large
amount of test data and have gained much interest recently,
along with the use of machine learning. After the initial
training of the dataset, aging results can be gained very fast
without a detailed parameterization or detailed knowledge of
the processes inside the cell. However, these models require
a large amount of test data and can lead to errors when the
cell is operated outside the test range because the model’s
extrapolation capability is typically weak. An example of
an NMC cell study is given in [89] for calendar aging and
a separate study for cycle aging [90], where the Gaussian
process model can learn and improve itself continuously from
real-world operation data. Severson er al. [91] provide a large
publically available cycle aging dataset for LFP cells with
varying fast charging and constant discharging currents. They
use machine learning to predict the cycle life only using
voltage curves from early cycles. Further datasets can be found
in [92] and [93]. With the use of cloud-connected batteries,
more and larger training datasets could be available in the
future. Studies already show how the data are transmitted
to the cloud and create a digital twin for battery health
analysis [94], [95]. Providing the datasets to the public will
help in fitting data-driven aging models for system simulations.
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C. Semiempirical Models

Semiempirical models attempt to combine the advantages of
electrochemical and data-driven models and find a compromise
between these two. To do this, a mathematical aging model is
fit with parameters from experimental results. The function
is relatively simple, allowing a fast computation time and
implementing the model in a vehicle control unit. Compared
to a data-driven model, fewer experiments are necessary, while
the semiempirical model can also extrapolate data accord-
ing to the mathematical function. These characteristics make
the semiempirical model very attractive for usage in health-
conscious EMS. The challenging task is to find a function that
describes the aging behavior well and includes all significant
degradation influencing parameters. Therefore, the prediction
quality of the models depends on the covered experimental
testing points [96]. We focus on studies, which provides data
and information to rebuild the aging model and does not
require updates over a lifetime with filter algorithms.

1) Cycle Aging: To model the capacity fade in a semi-
empirical model, physical parameters are considered and fit
to predefined equations with the lowest regression error. The
equations usually consider the SOC, current, temperature,
DOD, time, and energy throughput, given in ampere-hours or
cycle numbers.

One of the most widely used aging models that originate
from [97] is parameterized for an LFP cell in [98]

0 B-exp =£2) . an: (3)
oss — - €X .
1 p RT

where B and z are fitting parameters and E,, R, T, and Ah
describe the activation energy, universal gas constant, temper-
ature, and total Ah-throughput, respectively. The power-law
factor z ranges between 0.5 and 1 in most studies. The
exponential part of the equation describes Arrhenius-kinetics,
which describes the temperature dependence for many chemi-
cal reactions and is often applicable to battery aging. In [99],
calendar and cycle life are fit with the model from [98] for
an NCA cell and a similar LFP cell. In a later study [100],
the equation was extended to a control-oriented model includ-
ing a current and SOC dependence with further experimental
calibration

—E,+7vy -1
Qloss = ((l - SOC +/8) : exp(#

o7 ).Ahz )

where o, 5, and y are further fitting parameters and I¢
is the current dependence. The literature with cycle life
models and the key findings can be found in Table III.
Only Hoog er al. [68] and Naumann er al. [101] include
all influencing factors in their experimental design, so the
resulting cycle aging models can have a different form, and
only a few are validated with a dynamic testing profile.
In addition, a comparison between different cell chemistries
is impossible, making it challenging to derive a general
equation.

2) Culendar Aging: The previously shown aging models
concentrate on cycle aging, which is the basis for a control-
oriented model. For aging-aware sizing of the components,
the capacity fade during calendar aging is also essential, as the
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TABLE III
CYCLE AGING STUDIES FOR SEMIEMPIRICAL MODELS

Study/ Cell Investigated factors Results Key findings
Year
T Ah/n SOC DOD Cue  Qioss Rine
[102] Sanyo UR18650W v Vv v v v - Capacity fade correlates linearly with Ah-throughput
2014 1.5Ah - T and I more significant than DOD
Cylindrical - Calendar results included, but from cycle tests with the lowest harm (C/2 and
NMC+LMO/G 10% DOD)
[68]  EIG v v v v v v - C-Rate tested but was not significant
2017 20 Ah - High DOD and temperatures cause the strongest capacity loss
Pouch - Dynamic validation with driving profile
NMC/G - Calendar results included
[69] Sanyo UR18650E v v v v v" - Focus on DOD window
2014  2.05 Ah - Capacity fade has square root dependency over Ah-throughput
Cylindrical - Lowest aging around medium SOC and low DOD
NMC/G - Dynamic validation with driving profile
- Calendar results included
[98]  A123 26650 v v v v v - DOD tested but was not significant
2011 2.2 Ah - High temperatures and C-Rates cause the strongest capacity fade
Cylindrical - Charge throughput modeled with power-law factor of 0.55
LFP/G
[99]  A123 26650 v v v v - Calendar results collected from [103], cycle aging from [98, 104]
2016  2.3Ah - Dynamic validation with results from literature for cycle aging
Cylindrical - Coupling with an electrothermal model for Vehicle-to-Grid studies
LFP/G - NCA cell more sensitive to cycle aging than LFP cell
Saft VL6P
7 Ah
Cylindrical
NCA/C
[100] A123 ANR26650 v Vv v v - Charge throughput modeled with a power-law factor of 0.57
2016 2.5Ah - Testing model accuracy with dynamic test from literature
Cylindrical - Extending the battery aging model with severity factor map for EMS integration
LFP/G
[101]  Sony/Murata v v v v v v v' - Comprehensive cycle aging study, calendar results published in [105]
2020  US26650FTC1 - Capacity fade with power-law factor of 0.5, resistance increase with 1
2.85 Ah - Temperature had no significant influence between 25-40°C
Cylindrical - C-Rate shows minor influence compared to DOD and mean SOC
LFP/G - Dynamic validation results included
[106]  Unspecified 26650 v v v v - C-Rate effect was minimal, no clear dependency observable
2015 23 Ah - Polynomial or exponential influence of DOD depending on the DOD level
Cylindrical - Dynamic validation results
LFP/G - Calendar aging results published in [107]
[108, Kokam v v v v' - Detailed temperature aging study
109] SLPB 8043140HS5 - Internal temperature gradients influence the aging behavior differently compared
2020 3.2Ah to steady temperatures
Pouch - Calendar aging results published in [110]
NCA+LCO/G

allowed capacity fade shrinks during cyclization. Furthermore,
it is possible to subtract the capacity loss during the cycle test,
which originates from the calendar degradation. Since the cell
is not cycled, only the temperature, storage SOC, and time are
influencing factors. As a general function, the capacity fade
during calendar aging is often stated as

_Ea z
Qloss =C- CXP( RT ) -1 (5)
where ¢ is the storage time and C a preexponential factor,
which can be SOC and temperature-dependent. Published
calendar aging studies with model parameters are listed
in Table IV. Compared to cycle life models, it can be seen that
the calendar aging studies cover all influencing factors more
often, and the influences correspond between the different

examinations. Nevertheless, not all studies have a dynamic
validation included and consider the anode overhang in their
results.

3) PHEV Adaption: Some studies also focus on battery
aging for PHEV applications. In comparison to the previously
stated models, the PHEV models can differ in two ways. First,
a detailed investigation of shallow cycling at lower SOC can
be done, which corresponds to the charge sustaining operation
(see Fig. 6). In this case, the battery has reached the lower
SOC limit and is subsequently used as an HEV until it is
charged again. In [111], such a model is generated for an LFP
cell. The aging model depends on cycle numbers instead of
Ah-throughput and is fit according to

Qloss = (@ + f#- DOD + y s € Rae) 130, ©
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TABLE IV
CALENDAR AGING STUDIES FOR SEMIEMPIRICAL MODELS

Study/ Cell Investigated factors Results Key findings
Year T  SOC Time Qu« R
[102] Sanyo URI18650W v v v - Data for the calendar aging model originates from cycle tests with the lowest harm
2014 1.5Ah (C/2 and 10% DOD)
Cylindrical - SOC dependency not covered
NMC+LMO/G
[68]  EIG v v v v - Polynomial fit for capacity loss
2017 20 Ah - High temperatures and SOC cause the highest degradation
Pouch - Dynamic validation results
NMC/G
[69] Sanyo UR18650E v v v v' v - Time depend with power-law factor of 0.75
2014  2.05 Ah - SOC influence on capacity and resistance is increasing linearly
Cylindrical - Temperature follows Arrhenius law
NMC/G
[99] A123 26650 4 v 4 v - Calendar results collected from [103], cycle aging from [98, 104]
2016  2.3Ah - SOC dependence of factor B differs for LFP (decreases) and NCA (increases)
Cylindrical - Power-law factor z is SOC dependent for LFP (decreases), but not for NCA
LFP/G
Saft VL6P
7 Ah
Cylindrical
NCA/C
[105]  Sony/Murata v v v v v' - Power-law factor 0.5 for capacity fade and 1 for resistance increase
2018  US26650FTC1 - Temperature follows Arrhenius law
2.85 Ah - Cubic function for SOC dependence on capacity fade (increasing)
Cylindrical - Quadratic function for SOC dependence on resistance increase, highest at 50% SOC
LFP/G - Anode overhang considered
- Dynamic validation results
[107]  Unspecified 26650 v v v 4 - Temperature follows Arrhenius law
2014 2.3 Ah - Exponential SOC dependence (increasing)
Cylindrical - Dynamic validation results
LFP/G
[113]  Unspecified v v v v' ¥ - Resistance increases linearly with capacity fade
2014 15Ah - SOC shows linear influence, Temperature exponential
Cylindrical - Dynamic validation results
LFP/G
[114]  Unspecified v v v v v' - Fitting results for several functions were evaluated
2012 6Ah - Power-law factor 0.5
unknown - Temperature and SOC accelerate aging exponentially
NMC/G - Coupling of impedance model
[115]  Unspecified v v v v v - Open circuit and constant voltage measurements only differ at 100%SOC
2013 10Ah - Power-law factor 0.5
Pouch - Temperature follows Arrhenius law
NMC/G - Dynamic validation results
[110] Kokam v v v' v - Temperature follows Arrhenius law
2021  SLPB 8043140H5 - Proofed that there is no path dependency
3.2Ah - Fit relies on exponential function
Pouch
NCA+LCO/G

Compared to the cycle aging models from Section IV-CI,
a linear and exponential dependence of the DOD and current
is similar though the power-law factor is above one, which
results in faster degradation. The reason for this could be the
discharge process until 0% SOC with resulting additional or
enhanced aging mechanisms, yet similar results were found
in [112]. Shallow cycling around lower SOCs was also con-
sidered in [68] and [69].

Second, the aging function can include the time-share spent
in charge depleting and charge sustaining mode instead of
introducing a separate capacity fade function for the shallow
cycling part. The depleting phase is characterized by large
pure electric driving distances, which results in higher DODs.

A ratio considering this fact is introduced in [116]

. Icp
Ratio =

Icp + Ics @
with the time spent in charge depleting mode 7cp and charge
sustaining mode fcs. Instead of a constant current discharge
process, the cell’s power profiles are dynamic and mimic a
real-life power consumption in a PHEV. The capacity model
for an NMC-LMO cell is stated as

Qloss = (& + - Ratio” + 6 - (SOCpin — SOCo)*)

—E, .
. CXP(F) - Ah* (8)
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Fig. 6. Share of charge depleting (CD) and charge sustaining (CS).

where SOCy, a, f, 7,0, and e are fitting parameters and
SOCin is the lower SOC boundary, where the transition to
the sustaining mode occurs. The equation agrees with the
Arrhenius and power-law function found in other publications.
The lowest aging rate can be achieved in charge sustaining
mode with a ratio of zero, whereas operation in charge
depleting mode leads to the highest capacity face. A resistance
model can be found in this article as well, which is also
dependent on the charging current rate CR

Rine = D(SOCpin, Ratio, CR) - exp(R—l;a) -Ah. (9)

The model was recently used in [117], where a prognostic
model predicts the capacity loss and estimates the remaining
useful life. A particle filter algorithm estimates the SOC and
battery resistance, which serves as an input for a stochastic
aging model. This study shows how semiempirical models can
serve as online SOH estimators inside battery management
systems.

The influence of the ratio is examined further in [118]
with LFP cells cycles with a ratio of 0.5 and 0.75. The
results show that a larger ratio will accelerate the degradation
behavior, but it is important to distinguish between reversible
and irreversible capacity loss. About 77% of the capacity loss
could be recovered by raising the cutoff voltage, resulting in a
remaining capacity fade of only 2% and 4.4%, respectively.
Hence, a comprehensive aging model needs to include an
evaluation of capacity recovery for PHEV cycling as well.

Similarly, in [119], cells were cycled with a specific PHEV
current profile, and the authors investigated the path depen-
dence of power pulses and thermal cycles. Since both influ-
enced the aging behavior, they emphasize the need for more
data to predict PHEV aging phenomena realistically.

D. Summary and Recommendations for PHEV
System Simulations

Semiempirical models show the largest potential for inte-
gration into control-oriented systems and sizing simulations
because they allow a fast and easy prediction of the battery
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aging despite their nonchemical approach. Only a few stud-
ies concentrate on PHEV applications and test appropriate
profiles, which differ from HEV and EV profiles due to
a mix of charge depleting and charge sustaining cycling.
Furthermore, battery cells are customized for HEVs, PHEVs,
and EVs, which is roughly expressed in the power-to-energy
ratio. Nevertheless, this information cannot be extracted from
every paper, making it difficult to find aging models for
PHEVs. In addition, the reversible capacity effect is only partly
considered, making the model equations questionable. The
following aspects should be considered if one published aging
model shall be picked or own aging experiments are planned.

1) Experiments should contain as many significant factors
as possible.

2) The factor range should include the typical operation
points.

3) Calendar aging should be included, especially for sizing
studies.

4) Systems requiring high power (HEV/PHEV) should also
include a resistance model.

5) The model and experiments should consider the deplet-
ing and sustaining phase.

6) The chemistry should match the desired one.

7) Commercial cells can show different behavior compared
to automotive cells.

8) More recent studies, which take state-of-the-art cells into
account, are more desirable.

Since it is very challenging to match all of the criteria, further
research and publications in this area help to close the gaps
and allow higher prediction accuracy.

V. ENERGY MANAGEMENT STRATEGY CONSIDERING
BATTERY DEGRADATION

The EMS target is to split the power in an HEV optimally
because the propulsion power can be delivered either by the
ICE or by the electric motor. The EMSs can be divided
into rule-based (RB) and optimization-based (OB) strategies,
as shown in Fig. 7.

A. Rule-Bused Energy Management Strategy

RB strategies divide the power flow according to predefined
rules. The simplicity of this EMS allows real-time imple-
mentation, therefore usage in vehicle control units. The main
difference to OB strategies is the nonoptimality because no
optimization process is included in this type of strategy. Tuning
of the rules is possible but very time-consuming and dependent
on the drive cycle, so optimality cannot be guaranteed for
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different driving trips. A further categorization can be done
between deterministic and fuzzy logic control strategies.

1) Deterministic Rule-Based Strategy: For deterministic RB
strategies, the vehicle operates according to rules so that
the main energy sources operate under optimal conditions,
e.g., lowest fuel consumption for the ICE or minimal battery
degradation for the battery. In [120] and [121], a series
PHEV is controlled via two SOC-dependent thresholds, which
determines if the required power is delivered by the battery,
ICE, or a combination of both. The authors show that the
degradation-induced additional energy costs can be reduced
with an aging-aware EMS, optimized offline by a particle
swarm optimization (PSO). A comparison between RB and OB
strategies is done in [17] for a series PHEV bus for optimizing
the DOD for minimal operating costs, including equivalent
battery degradation costs. The aging models [98], [122] cal-
culate the latter. Despite a comparable low computation time,
the results of the OB strategies are better than the RB strategy.

A different RB approach is to distinguish between different
frequencies of power demands and split the power accordingly.
The ICE encounters difficulties with high-frequency power
courses, so it is used for the baseline propulsion power,
whereas the electric motor is used for the dynamic peaks.
In [123] and [124], a PHEV EMS is investigated with a
wavelet transform to decompose the low and high frequencies.
The battery degradation could be lowered qualitatively by
cutting off the high peak currents of the battery.

2) Fuzzy Logic Rule-Based Strategy: Fuzzy logic-based
EMSs are based on qualitative descriptions instead of deter-
ministic rules. The advantages are higher robustness and
adaption to different systems compared to deterministic EMS,
while it is still easy to implement and real-time capable.
A fuzzy-based PHEV with an HESS with a battery lifetime
model is optimized in [125]. With the degradation model
from [126], it was possible to lower the degradation for several
drive cycles. To improve the fuzzy EMS further toward opti-
mality, the rules can be adapted through external optimization
algorithms. In [127] the neuro-fuzzy rules are trained with
off-line global optimal results considering the TCO, which
includes battery aging costs calculated from a DOD-dependent
Wohler curve from [128]. The hierarchical EMS could lower
the TCO on vehicle and fleet levels.

B. Optimization-Based Strategy

OB strategies can be divided into global and real-time
EMSs. The former ones can find the global optimization target
but need a priori knowledge of the drive cycle or several
optimization loops until the optimum is found. In addition,
the computation time is extended, which makes vehicle imple-
mentation difficult. Real-time EMS overcomes this issue by
turning the global cost function into an instantaneous problem,
which is solved in every time step. These strategies cannot
guarantee a global solution but can produce near-optimal
results if the parameters are tuned correctly and robust.

1) Globul Optimization-Based Strategy: Despite the com-
putational burden and the real-time inability, the results can
serve as a benchmark solution for other strategies and a
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template for EMS, which needs to tune rules or parameters.
The most discussed strategies are dynamic programming (DP),
Pontryagin’s minimum principle (PMP), and stochastic search
methods (SSMs).

a) Dynamic programming: The DP algorithm divides the
drive cycle into discrete time steps. A cost-to-go matrix is
built for each time step, which is then solved backward for
the path with minimal costs. This approach requires a priori
knowledge of the drive cycle, which is why this method is
also called deterministic DP (DDP). In [19], the operating
costs of a PHEV with an HESS are minimized using the aging
model of [98]. The inner loop employs the DP algorithm to
minimize battery degradation. The outer loop minimizes the
operating costs using simulated annealing (SA), which is an
SSM optimization and is explained afterward in this chapter.
Compared to a battery pack without ultracapacitors, the costs,
battery degradation, and thermal heat dissipation could be
decreased. To implement the EMS into a vehicle, the dual-
loop optimization results are given to a stochastic DP (SDP)
algorithm, which is a real-time capable improvement of the DP
algorithm. The power demand is considered with a Markov
process, which calculates transition probabilities from one
state to the next based on several drive cycles. No future
driving information is needed because the probabilities only
depend on the current Markov state. Still, optimality can
only be guaranteed for the drive cycles that are considered
in the Markov chain. Moura et al. [129] decrease aging and
energy consumption with an SDP algorithm for a PHEV and
compare two different aging models. The SEI thickness model
from [79] is compared with an Ah-processed model, which
minimizes energy throughput. The problem is considered a
multiobjective optimization problem with two targets. Since
the two targets are conflicting, there is no single but a set
of optimal solutions, which are called Pareto-optimal. For
these solutions, a single target cannot be improved, without
impairing a different target. The Pareto results from randomly
generated drive cycles with a Markov chain show different
aging models’ suggestions. It is beneficial for a low SEI
thickness to discharge the battery quickly and avoid high SOC
levels. On the contrary, for low energy costs, the battery is
depleted slowly to avoid the fuel expensive charge-sustaining
mode. The Ah-processed model leads to different results
because it will avoid using electrical energy and utilize the
ICE in more operating points.

b) Pontryagin’s minimum principle: Another global opti-
mization algorithm, the PMP algorithm, reduces the global
optimization problem to a local Hamiltonian minimization
problem. It delivers only necessary but not sufficient solu-
tions for the global optimum. In return, it has only one
tunable parameter and has lower computational requirements
than DP. The parameter, also called costate, significantly
influences the battery’s depleting behavior and needs to be
adjusted specifically for every drive cycle. In [130], a charging
strategy optimization for PHEVs and BEVs is applied with
a semiempirical model from [98] and experimental calibra-
tion from [100]. For the optimal control problem and PMP
algorithm, a severity factor based on the current, SOC, and
temperature i utilized. With the optimal charging profile,
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the degradation could be reduced compared to the standard
CC-CV profile. In addition, the authors show with a detailed
weather and cabin temperature model that solar heat has a
significant influence on the severity factor and aging behavior.
With the knowledge of environmental data, the charging period
could be shifted to an optimal time, where the predicted aging
is the lowest. The optimal depleting strategy with PMP is
investigated in [131] for a series—parallel PHEV bus with
an HESS. The degradation model from [98] is taken, but
it is calibrated with the experimental results from [132].
The optimization target was set to minimize the total costs,
including equivalent costs for the battery’s aging. Compared
to a PHEV with only a single battery, the costs could be
decreased with an HESS powertrain, mainly due to the lower
aging costs.

¢) Stochastic search methods: The SSM methods belong
to the gradient-free optimization techniques and gain a lot
of research interest because of their robustness and global
optimum convergence. Typically used SSM algorithms are
genetic algorithm (GA), PSO, and SA. A PHEV with a simple
RB strategy is optimized in [133]. The rule parameters are
improved with a GA in terms of lower fuel consumption and
battery degradation. The aging model originates from [116],
which also takes the time ratio for charge depleting and
sustaining into account. A drive cycle recognition is applied
afterward for better adaptability to different driving cycles than
the one used in the optimization. With the help of drive cycle
recognition, the fuel consumption could be lowered, while
the battery degradation also drops slightly. Wang er al. [134]
combine SDP with a PSO algorithm to optimize fuel consump-
tion and battery aging for a power-split PHEV simultaneously.
They use the severity factor from [135] to calculate the
effective Ah-throughput and calibrate it with data from [136]
and [137]. The cost function combines two optimization tar-
gets by assigning an individual weight to them. The drive cycle
is divided into eight segments, where the SDP optimizes the
control in each segment. The PSO is used to find a balanced
weight factor for each segment with the best tradeoff between
fuel consumption and battery aging. In [138], the SEI thickness
model from [79] is applied with model order reductions and
calculation time improvements presented in [84]. The study
deals with a charge pattern optimization for the least costs and
battery degradation with changing electricity prices during the
day. A nondominating sorting GA determines the Pareto front
between the two objectives. The daily driving cycle consists
of two driving periods: one in the morning and one in the
afternoon. For the lowest battery degradation, no charge is
added and the vehicle functions in charge sustaining mode the
whole time. The lowest energy costs are achieved when the
battery is charged entirely for both trips. To obtain a cost-
efficient charging pattern with low battery aging, the authors
suggest charging the vehicle at off-peak hours shortly before
the trip.

2) Real-Time Optimization-Based: For an application in a
vehicle control unit, the optimization algorithm needs to be
calculated in real time. Therefore, the global problem is con-
verted to an instantaneous one to cope with the limited com-
putational power and memory space. These EMS types also
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do not require a priori drive cycle information because these
data are not available in the vehicle. However, some strategies
predict future operating points based on the navigation system
and sensors (e.g., GPS-sensor). The most discussed real-time
OB strategies are the equivalent consumption minimization
strategy (ECMS) and the model predictive control (MPC),
which can also be extended with prediction data.

a) Equivalent consumption minimization strategy: The
ECMS defines a local optimization problem by minimizing
the combined fuel consumption from the ICE and the battery’s
electric energy consumption. To compare the different types
of energy sources, an equivalence factor (EF) is assigned to
the electric energy. This factor is similar to the costate from
the PMP and is significant regarding the performance of the
EMS. Because of the significant importance of temperature
on battery aging in [139] additional to the fuel consumption
minimization, a second constraint on the battery tempera-
ture is applied. The thermal constraint is activated if the
battery is outside the defined slow-aging temperature zone.
For cold temperatures, the battery is heated up quickly at
the beginning of the trip, whereas the battery is used less
at high ambient temperatures. Both of these characteristics
lead to higher fuel consumption and a tradeoff against battery
aging. In [140], six different power-split configurations for
a PHEV bus are simulated for the lowest fuel consump-
tion and battery degradation. The aging model is adapted
from [98] with experimental calibration from [132], [141],
and [142]. The comparison between the different configura-
tions reveals that one is superior in terms of aging and fuel
economy.

An example of an SOC-adaptive ECMS (A-ECMS) imple-
mentation is given in [143] for a PO/P2 PHEV. A PI-controller
adjusts the EF during operation. In this study, an electro-
chemical aging model from [144] is used, and an additional
term for aging is added to the cost function. This term
assigns high costs for high SOC and current rates because
of the increased SEI layer growth. The EMS avoids a long
operation time in the high SOC area, large charge currents,
and battery utilization. With the adaptive ECMS, battery degra-
dation could be decreased, while the fuel consumption rises
only slightly. Another approach with an A-ECMS is recently
studied in [145], while this strategy is combined with a neural
network and off-line optimizations. The PHEV is modeled
with the severity factor aging model from [135] and [146] with
the fitting procedure according to [134]. The objective function
contains a weight factor for the two conflicting targets, fuel
consumption, and battery degradation. As shown in previous
studies, a sweep in the weight factor leads to a Pareto front.
The controller tries to regulate the SOC to a reference SOC
with minimal deviations. In this case, the reference is delivered
by a recurrent neural network, which is previously trained
offline. Again, the historical dataset is used together with DP
to obtain the optimal SOC trajectory. With the adaptive EF,
weight factor, and reference SOC, the controller is able to
reduce the battery degradation and fuel consumption compared
to a simple charge-depleting charge-sustaining strategy, where
the battery is depleted much faster. Compared to an SDP-PSO
strategy, the equivalent fuel consumption could be decreased
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with a further fuel save and slight degradation increase.
In [147], the ECMS equation is extended with a second state
variable for battery degradation. The weight factor between
battery aging and fuel consumption is calculated offline with
a PMP algorithm. The authors consider calendar aging as well
and emphasize that it should be considered for correct TCO
calculations with additional aging experiments for the desired
onboard battery type. Small differences between the global
optimal PMP and proposed dual A-ECMS show improvements
for the battery lifetime and fuel consumption at the same
time.

b) Model predictive control: The algorithm is comparable
to DP, but, instead of an infinite time horizon, the MPC
optimizes a finite receding horizon. This kind of EMS requires
drive cycle prediction or recognition information to optimize a
future time window. The data can be gathered by the vehicle
navigation system and sensors or by a mathematical model.
A series PHEV in charge-sustaining mode controlled by an
MPC is studied in [148]-[150] with the aging model from [98].
The sensitivity results highlight the tradeoff between accuracy
and calculation time of different battery model fidelities for
different objectives [149] and the need for a suitable vehicle
mass approximation by the controller [148]. The Pareto front
in [150] demonstrates that the MPC controller can reduce
the battery aging by almost one-half while keeping the fuel
consumption on the same level as an RB thermostat EMS. The
study [18] investigates a PHEV bus with different prediction
horizon windows and compares the results and the calculation
time of an MPC to an RB, DP, and PMP strategy. The
degradation is calculated with the severity factor method [146]
and the calibration from [100] and [122]. The total cost could
be reduced with a health-aware MPC because the savings from
a lower battery degradation were higher than the costs for
additional fuel. The MPC results lower the costs compared to
an RB strategy and come close to the global optimal results
from DP or PMP. The cycle calculation time increases with
a higher prediction horizon because the DP optimization time
is longer. However, even with a 15-s horizon, the model with
the lowest total costs, a real-time implementation is possible.
In [151], the MPC is combined with an iterative learning con-
trol, which improves the optimization target based on historical
data and the repetitiveness of power demand when driving
fixed routes. The aging model from [100] is taken to optimize
the degradation along with fuel consumption. After several
iterations, the improved MPC algorithm could get close to the
optimal DP results and improved both optimization targets
compared to an RB strategy. Similarly, in [152], the MPC
optimizes the energy consumption and battery degradation
according to [100], while it follows an SOC reference curve
generated from a Q-learning algorithm at the vehicle departure.
Guo er al. [153] combine the MPC algorithm with the aging
model from [98] and reduce it to be only current-dependent.
The velocity prediction from a neural network is the basis for
the SOC prediction. With this, a cost minimization, including
a term for battery aging, is done in the MPC controller, which
shows similar results to DP, but is far superior to a simple
rule-based strategy. A summary of the presented EMS types
can be found in Table V.
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TABLE V
EMS TYPES AND THEIR CHARACTERISTICS [25], [26]

EMS type Strategy Advantages Disadvantages

Rule-based  Deterministic - Simple and - Calibration effort

efficient - No optimality
- Widely used in
vehicles
Fuzzy logic - Robustness - Calibration effort

- Easy to implement - No optimality

Optimization- DP - Global optimum - A priori drive cycle

based - Benchmark information
solution - Computational costs
PMP - Global optimal - A priori drive cycle
trajectory information
- Computational costs
SSM - Non local optimal - Parametrization of
results optimization
algorithm
ECMS - Near optimal - Optimum is drive
results cycle dependent
- Online
implementable
MPC - Predictive behavior - Prediction data re-
- Near optimal quired
results
- Online
implementable

VI. DISCUSSION AND FUTURE TRENDS

Battery degradation will have an essential role in the future
because overdimensioning the battery pack or not meeting
the lifetime requirements will lead to high component costs.
Higher degrees of electrification result in increasing battery
pack capacities, which will raise the electrical system’s cost-
share inside a PHEV powertrain further, making it one of the
most important parts inside a vehicle. A lack of comprehen-
sive, state-of-the-art, control-oriented battery aging models for
PHEVs was identified and requires further exploration. The
effects on aging-aware EMSs for PHEVs and optimization
frameworks are still not understood completely and can be
improved with respect to the optimization, prediction, and cov-
erage of all real-world PHEV operating cases. The remaining
challenges and possible starting points for researchers of these
topics are summarized in this section.

A. Battery Aging Models for PHEVs

Over the past years, several aging models for different pur-
poses were published. Semiempirical models gained the most
interest in the field of aging-aware EMSs because they offer a
compromise between calculation time, experimental effort, and
accuracy. However, it was shown that the models still differ
from each other, even for the same chemistry. Up until now,
no standardized testing procedure and matrix exists, which
covers all the degradation-influencing factors. Especially for
cycle aging models, it can be seen that some studies contain
parameters, which are not present in other models. Only a few
experiments cover cycling in charge sustaining and in charge
depleting mode. For PHEV powertrain simulations, it is nec-
essary to cover both modes in cycle experiments because the
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degradation differs significantly. Shallow cycling around lower
SOCs and cycling with high DODs should, therefore, be cov-
ered in future publications. For a comprehensive description of
battery aging in vehicles, more experiments covering the broad
range of chemistries and operating conditions are necessary.
In addition, it should be noticed that some studies contain
commercial battery cells, which can have a significantly differ-
ent aging behavior compared to cells certified for automotive
usage. More publically available datasets of state-of-the-art
battery cells would increase the model quality, especially if
the intended application is mentioned for HEVs, PHEVs, and
EVs cells. Finally, it is conspicuous that most aging-oriented
EMSs use the aging model [98] for a commercial LFP
cell. After the publication of this study, further models for
automotive applications, including capacity-recovering effects
and calendric aging test points, were proposed. Integrating
these models could further improve the outcome of EMS
optimizations.

B. Real-Drive Condition Focus

Additional to the powertrain layout and EMS, the fuel
consumption and degradation of the battery are influenced
by further boundary conditions, such as the driving profile,
charging behavior, and climate conditions [154]. Optimizing
PHEV vehicles based on standard driving cycles makes the
results comparable, yet the real-world driving energy demand
is typically higher. Stochastic models or representative driving
cycles would improve the accuracy of studies. In particular,
the optimization results for PHEVs depend on the charging
behavior as well [20] not only because the charging procedure
harms the battery but it will also determine how often the
vehicle is driven in charge sustaining and charge depleting
mode. Statistical, descriptive models for the charging behavior
of the customers are still needed. Finally, extreme temperatures
can enhance the auxiliary power demand due to cooling or
heating elements, limit the allowed battery power limits, accel-
erate the degradation mechanisms, and decrease the accessible
energy or power inside the battery cells [24], [112]. Publishing
models in this area and investigating the influence on battery
aging will move the optimization results toward real-life global
optimality.

C. Comprehensive Optimization Frameworks

Papers discussing aging-aware EMSs and component siz-
ing [19], [155] prove that both domains have to be optimized
at the same time because they affect each other. This bilevel
optimization procedure leads to a high number of possible
combinations, which enlarges even further if two types of
energy storage devices are used like in HESSs. This will
typically result in large computation times, underlining the
need for faster and global optimal optimization methods.
Finally, the optimization targets usually focus on fuel con-
sumption, battery aging, or TCO minimization, but further
aspects, such as drivability, emissions, and comfort, should
be studied additionally.
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VII. CONCLUSION

This article has reviewed and analyzed the current research
status of EMSs considering battery aging, with a special
focus on PHEV applications. First, the hybrid powertrain
designs are discussed and compared. Next, the main aging
mechanisms with their drivers are reviewed, and insight into
reversible capacity losses is given. Currently existing aging
models used for powertrain simulations and newer ones are
summarized, and the special requirements for PHEV appli-
cations are explained. The models’ divergence showed that
more experiments are required to thoroughly understand the
degradation and build precise, simple, control-oriented models,
especially with PHEV operating conditions. The analysis of
current EMSs frameworks revealed that most strategies rely
on a few aging models, which does not include experimental
findings of recent battery aging research and are not suitable
for automotive PHEV applications. Several open issues and
starting points for researchers are presented finally. Precise
and efficient aging models covering a broad range of operation
points for several automotive battery types in combination with
real-drive EMSs and sizing optimizations will help to meet
PHEVs’ lifetime and emission requirements efficiently in the
future.
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